论文标题
从准莫特绝缘子中的几何性手性的强零模式
Strong zero modes from geometric chirality in quasi-one-dimensional Mott insulators
论文作者
论文摘要
强零模式为量子多体系统提供了一个范式,以编码远离基态的局部自由度。示例系统包括$ \ mathbb {z} _n $手性量子时钟模型,具有与$ \ Mathbb {z} _n $ Parafermions相关的强零模式。在这里,我们展示了这些模型及其零模式是如何来自费米子莫特绝缘子中的几何手性,重点是$ n = 3 $,其中莫特绝缘子是三腿梯子。我们将这些梯子与$ \ mathbb {z} _3 $手性时钟模型联系起来,通过将肺泡与一般对称性考虑相结合。我们还引入了一个混凝土晶格模型,我们显示该模型将其映射到$ \ mathbb {z} _3 $手性时钟模型,该模型由Uimin-Lai-Sutherland Hamiltonian通过SupereXchange造成。我们通过证明边缘的时钟操作员的相关器在系统尺寸(即使在无限温度下)在成倍长的时间内仍接近其初始值,从而证明了这种扰动模型中强零模式的存在。
Strong zero modes provide a paradigm for quantum many-body systems to encode local degrees of freedom that remain coherent far from the ground state. Example systems include $\mathbb{Z}_n$ chiral quantum clock models with strong zero modes related to $\mathbb{Z}_n$ parafermions. Here we show how these models and their zero modes arise from geometric chirality in fermionic Mott insulators, focusing on $n=3$ where the Mott insulators are three-leg ladders. We link such ladders to $\mathbb{Z}_3$ chiral clock models by combining bosonization with general symmetry considerations. We also introduce a concrete lattice model which we show to map to the $\mathbb{Z}_3$ chiral clock model, perturbed by the Uimin-Lai-Sutherland Hamiltonian arising via superexchange. We demonstrate the presence of strong zero modes in this perturbed model by showing that correlators of clock operators at the edge remain close to their initial value for times exponentially long in the system size, even at infinite temperature.