论文标题

旋转粒子的组 - 代数表征:半模拟,SO(2n)结构和iWasawa分解

Group-algebraic characterization of spin particles: semi-simplicty, SO(2N) structure and Iwasawa decomposition

论文作者

Hounkonnou, Mahouton Norbert, Howard, Francis Atta, Kinvi, Kangni

论文摘要

在本文中,我们着重于旋转颗粒的费米,骨和副那构算子的谎言代数的表征。我们提供了一种构造量子自旋颗粒的谎言组结构的方法。我们显示了量子自旋粒子谎言代数的半动度,并将结果扩展到谎言组水平。此外,我们在谎言代数和谎言组水平上执行自旋颗粒的iWasawa分解。最后,我们研究了自旋半颗粒的角动量的耦合,并为这项研究提供了一般结构。

In this paper, we focus on the characterization of Lie algebras of fermionic, bosonic and parastatistic operators of spin particles. We provide a method to construct a Lie group structure for the quantum spin particles. We show the semi-simplicity of a quantum spin particle Lie algebra, and extend the results to the Lie group level. Besides, we perform the Iwasawa decomposition of spin particles at both the Lie algebra and Lie group levels. Finally, we investigate the coupling of angular momenta of spin half particles, and give a general construction for such a study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源