论文标题
异国贝塞尔框架中基本谐波分析运算符的映射属性
Mapping properties of fundamental harmonic analysis operators in the exotic Bessel framework
论文作者
论文摘要
我们证明了急剧加权的$ l^p $,弱类型和限制性弱类型不平等,最大程度的运算符,Riesz在参数$ - \ infty $ - \ infty $ - \ infty <ν<ν<1 $的外来范围内与Bessel Operator $B_ν$相关的Riesz变换。此外,在同一框架中,我们表征了其他基本谐波分析运算符的基本映射属性,包括基于热半群的垂直$ g $ - 功能和分数积分(RIESZ潜在运算符)。
We prove sharp power-weighted $L^p$, weak type and restricted weak type inequalities for the heat semigroup maximal operator and Riesz transforms associated with the Bessel operator $B_ν$ in the exotic range of the parameter $-\infty < ν< 1$. Moreover, in the same framework, we characterize basic mapping properties for other fundamental harmonic analysis operators, including the heat semigroup based vertical $g$-function and fractional integrals (Riesz potential operators).