论文标题

短置方程的孤子分辨率

Soliton Resolution for the Short-pluse Equation

论文作者

Yang, Yiling, Fan, Engui

论文摘要

在本文中,我们通过使用$ \ overline \ partial $陡峭下降方法来研究cauchy的问题,用于焦点非线性短板方程。 \ begin {align}&u_ {xt} = u++\ frac {1} {6}(u^3)_ {xx},\ nonumber \\&u(x,0)= u_0(x,x)= u_0(x)\加权的索博尔空间。由于频谱变量z在WKI型LAX对中是相同的顺序,因此我们在新的量表$(y,t)$中构建SP方程的解决方案,而原始的比例$(x,t)$是按新量表和Riemann-Hilbert问题的解决方案提供的。在任何固定的时空圆锥中,新的比例$(y,t)$,将$ v_1 \ leq v_1 \ in r^ - $和$ξ= \ frac {y} {y} {t} {t} <0 $,\ begin \ begin \ begin {equination} r^2 | y = y_0+vt,y_0 \ in [y_1,y_2] \ text {,} v \ in [v_1,v_1,v_2] \ right \ rbrace,\ nonumber \ end \ end {qore {equication}我们要计算the解决方案$ u(x,t)的长时间的noce undose $ u(x,x,t resiT resity res intive:以$ n(i)$ - soliton为特征,其参数被一个局部孤子 - 索尼顿相互作用的总和调制,因为一个人通过锥体移动;第二个$ t^{ - 1/2} $订单项来自连续频谱上的单人辐射互动,直至剩余错误订单$ \ MATHCAL {o}(| t |^{ - 1})$来自$ \ overline \ partial $方程。我们的结果还表明,短板方程的孤子溶液在渐近稳定。

In this paper, we study the Cauchy problem for the focusing nonlinear short-pluse equation by using $\overline\partial$ steepest descent method. \begin{align} &u_{xt}=u+\frac{1}{6}(u^3)_{xx}, \nonumber\\ &u(x,0)=u_0(x)\in H^{1,1}(R),\nonumber \end{align} where $H^{1,1}(R)$ is a weighted Sobolev space. Because the spectral variable z is the same order in the WKI-type Lax pair, we construct the solution of SP equation in the new scale $(y,t)$, whereas the original scale $(x,t)$ is given in terms of functions in the new scale and the solution of Riemann-Hilbert problem. In any fixed space-time cone of the new scale $(y,t)$ which stratify that $v_1\leq v_1 \in R^-$ and $ξ=\frac{y}{t}<0$, \begin{equation} C(y_1,y_2,v_1,v_2) = \left\lbrace (y,t) \in R^2|y=y_0+vt, y_0 \in[y_1,y_2]\text{, } v\in[v_1,v_2]\right\rbrace, \nonumber \end{equation} we compute the long time asymptotic expansion of the solution $u(x,t)$, which prove soliton resolution conjecture consisting of three terms: the leading order term can be characterized with an $N(I)$-soliton whose parameters are modulated by a sum of localied soliton-soliton interactions as one moves through the cone; the second $t^{-1/2}$ order term coming from soliton-radiation interactions on continuous spectrum up to an residual error order $\mathcal{O}(|t|^{-1})$ from a $\overline\partial$ equation. Our results also show that soliton solutions of short-pluse equation are asymptotically stable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源