论文标题

关于动态疫苗接种游戏的拉格朗日二元理论

On Lagrange duality theory for dynamics vaccination games

论文作者

BArbagallo, Annamaria, Ragusa, Maria Alessandra

论文摘要

作者研究了一个无限的二重性理论,最终确定了与疫苗接种管理有关的凸优化问题与其拉格朗日双重双重性之间的强大二元性的存在。具体而言,作者使用作为基本工具的双重问题显示了一个称为假设S的假设。该技术改善了以前的强双重性结果,需要凸入锥体内部的非空性。作者使用二元性理论分析动态疫苗接种游戏,以获取与问题相关的Lagrange乘数的存在,并更好地理解问题的含义。

The authors study an infinite dimensional duality theory finalized to obtain the existence of a strong duality between a convex optimization problem connected with the management of vaccinations and its Lagrange dual. Specifically, the authors show the solvability of a dual problem using as basic tool an hypothesis known as Assumption S. Roughly speaking, it requires to show that a particular limit is nonnegative. This technique improves the previous strong duality results that need the nonemptyness of the interior of the convex ordering cone. The authors use the duality theory to analyze the dynamic vaccination game in order to obtain the existence of the Lagrange multipliers related to the problem and to better comprehend the meaning of the problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源