论文标题
加权构图操作员的紧凑差异
Compact Differences of Weighted Composition Operators
论文作者
论文摘要
从加权伯格曼空间$ a^p_Ω$到另一个加权的伯格曼太空$ a^q_ν$的两个加权构图操作员的紧凑差异,其中$ 0 <p \ le q <\ q <\ infty $ and $ω,ν$属于class $ \ \ \ \ \ \ \ \ m rathcal {d} $ radial {d} $ radial {d} $ radial {d} $ radial {d} $ radial {d} $ radial {d} $满足两层的条件。在证明$ a^p_Ω$的$ q $ -carleson措施的新描述中,就建立了\ Mathcal {d} $的$ω\,就pseudohyperbolic碟片建立了。这个最后提到的结果概括了经典加权伯格曼空间$ Q $ -CARLESON措施的众所周知的特征,并在倍增权重的设置中,$ -1 <α<\ infty $。
Compact differences of two weighted composition operators acting from the weighted Bergman space $A^p_ω$ to another weighted Bergman space $A^q_ν$, where $0<p\le q<\infty$ and $ω,ν$ belong to the class $\mathcal{D}$ of radial weights satisfying two-sided doubling conditions, are characterized. On the way to the proof a new description of $q$-Carleson measures for $A^p_ω$, with $ω\in\mathcal{D}$, in terms of pseudohyperbolic discs is established. This last-mentioned result generalizes the well-known characterization of $q$-Carleson measures for the classical weighted Bergman space $A^p_α$ with $-1<α<\infty$ to the setting of doubling weights.