论文标题

通过可观察的有效匹配原理实现有效的重归化量表和方案独立性

Achieving effective renormalization scale and scheme independence via the Principle of Observable Effective Matching

论文作者

Chishtie, Farrukh A.

论文摘要

在这项工作中,我们阐述了一种新的方法来消除可观察到的重新归一化量表和方案(RSS)依赖性。我们通过将依赖RSS的可观察结果(例如横截面和衰减速率)与与这两种依赖性形式无关的理论相匹配来开发这种方法。我们将这种方法背后的基本依据称为可观察有效匹配(诗)的原理,它需要在循环订单下可观察到的量表和方案依赖性观察到的量表和方案依赖性量表(PS)和动态规模依赖性理论,以保证RSS独立性。这旨在实现所谓的“有效”独立的表达式,因为所得的动力学依赖性是从RSS依赖性扰动理论中的特定顺序得出的。通过在PS上进行实验确定耦合(和质量)的PS的匹配,我们获得了“有效的理论可观察(ETO)”,这是可观察到的RSS依赖性的有限rse-RSS独立版本。我们通过研究横截面比$ r_ {e^{+} e^{ - }} $的研究来说明我们的方法eto。通过两环匹配,我们获得了$ \ frac {3} {11} r_ {e^{e^{+} e^{ - }} = 1.052431 _ { - 0.0006}^{+0.0006} $ Q = 31.6 geev $的ETO预测。 $ \ frac {3} {11} r_ {e^{+} e^{ - }}}^{exp} = 1.0527 _ { - 0.005}^{+0.005} $。

In this work, we explicate a new approach for eliminating renormalization scale and scheme (RSS) dependence in observables. We develop this approach by matching RSS dependent observables (such as cross-sections and decay rates) to a theory which is independent of both these forms of dependencies. We term the fundamental basis behind this approach as the principle of observable effective matching (POEM), which entails matching of a scale- and scheme-dependent observable with the fully physical scale (PS) and dynamical scale-dependent theory at loop orders at which RSS independence is guaranteed. This is aimed toward achieving so-called "effective" RSS-independent expressions as the resulting dynamical dependence is derived from a particular order in RSS-dependent perturbation theory. With this matching at a PS at which the coupling (and masses) is experimentally determined at this scale, we obtain an "effective theoretical observable (ETO)", a finite-order RSS-independent version of the RSS-dependent observable. We illustrate our approach with a study of the cross-section ratio $R_{e^{+}e^{-}}$ for $e^{+}e^{-}\rightarrow$ hadrons, which is demonstrated to achieve scale and scheme independence utilizing the three- and four-loop order MS scheme expression in QCD perturbation theory via matching at both one-loop and two-loop orders for obtaining the ETO. With two-loop matching, we obtain an ETO prediction of $\frac{3}{11}R_{e^{+}e^{-}}^{eff}=1.052431_{-0.0006}^{+0.0006}$ at $Q=31.6 GeV$, which is in excellent agreement with the experimental value of $\frac{3}{11}R_{e^{+}e^{-}}^{exp}=1.0527_{-0.005}^{+0.005}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源