论文标题

深卷卷卷神经网络基于伯努利的热图用于头姿势估计

Deep Convolutional Neural Network-based Bernoulli Heatmap for Head Pose Estimation

论文作者

Hu, Zhongxu, Xing, Yang, Lv, Chen, Hang, Peng, Liu, Jie

论文摘要

头部姿势估计是许多任务的关键问题,例如驾驶员的注意,疲劳检测和人类行为分析。众所周知,与回归问题相比,神经网络在处理分类问题方面更好。这是一个极其非线性的过程,可以让网络直接输出角度值以进行优化学习,并且损耗函数的重量约束将相对较弱。本文提出了一个新型的Bernoulli热图,以从单个RGB图像中进行头部姿势估计。我们的方法可以在估计头部角度的同时达到头部面积的定位。 Bernoulli Heatmap使得无需完全连接层的完全卷积神经网络就可以构建完全卷积的神经网络,并为头姿势估计的输出形式提供了新的想法。采用具有多尺度表示的深度卷积神经网络(CNN)结构,以并行维持高分辨率信息和低分辨率信息。这种结构可以维持丰富的高分辨率表示。此外,采用Channelwise融合以使融合权重可以学习,而不是相等的重量。结果,该估计在空间上更加精确,并且可能更准确。通过将该方法与公共数据集上的其他最先进的方法进行比较,可以证明该方法的有效性。

Head pose estimation is a crucial problem for many tasks, such as driver attention, fatigue detection, and human behaviour analysis. It is well known that neural networks are better at handling classification problems than regression problems. It is an extremely nonlinear process to let the network output the angle value directly for optimization learning, and the weight constraint of the loss function will be relatively weak. This paper proposes a novel Bernoulli heatmap for head pose estimation from a single RGB image. Our method can achieve the positioning of the head area while estimating the angles of the head. The Bernoulli heatmap makes it possible to construct fully convolutional neural networks without fully connected layers and provides a new idea for the output form of head pose estimation. A deep convolutional neural network (CNN) structure with multiscale representations is adopted to maintain high-resolution information and low-resolution information in parallel. This kind of structure can maintain rich, high-resolution representations. In addition, channelwise fusion is adopted to make the fusion weights learnable instead of simple addition with equal weights. As a result, the estimation is spatially more precise and potentially more accurate. The effectiveness of the proposed method is empirically demonstrated by comparing it with other state-of-the-art methods on public datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源