论文标题

通过一致的潜在编码在CCA中的多视图对齐和发电

Multi-view Alignment and Generation in CCA via Consistent Latent Encoding

论文作者

Shi, Yaxin, Pan, Yuangang, Xu, Donna, Tsang, Ivor W.

论文摘要

在许多现实世界中的多视图应用程序中,多视图对齐,实现多视图输入的一对S对应关系至关重要,尤其是对于跨视图数据分析问题。最近,越来越多的作品研究了使用规范相关分析(CCA)的对齐问题。但是,由于忽视不确定性或对多个视图的编码不一致,现有的CCA模型很容易错过多个视图。为了解决这两个问题,本文从贝叶斯的角度研究了多视图的一致性。研究不一致的编码的损害,我们建议通过与不同形式的分解形式的多视随机变量的关节分布的边缘化来恢复多视图输入的对应关系。为了实现我们的设计,我们提出了对抗性CCA(ACCA),该CCA(ACCA)通过通过对抗性训练范式匹配边缘化潜在编码来实现一致的潜在编码。我们基于条件互信息的分析表明,ACCA可以灵活地处理隐式分布。在嘈杂的输入设置下进行相关分析和跨视图产生的广泛实验证明了我们的模型的优势。

Multi-view alignment, achieving one-to-one correspondence of multi-view inputs, is critical in many real-world multi-view applications, especially for cross-view data analysis problems. Recently, an increasing number of works study this alignment problem with Canonical Correlation Analysis (CCA). However, existing CCA models are prone to misalign the multiple views due to either the neglect of uncertainty or the inconsistent encoding of the multiple views. To tackle these two issues, this paper studies multi-view alignment from the Bayesian perspective. Delving into the impairments of inconsistent encodings, we propose to recover correspondence of the multi-view inputs by matching the marginalization of the joint distribution of multi-view random variables under different forms of factorization. To realize our design, we present Adversarial CCA (ACCA) which achieves consistent latent encodings by matching the marginalized latent encodings through the adversarial training paradigm. Our analysis based on conditional mutual information reveals that ACCA is flexible for handling implicit distributions. Extensive experiments on correlation analysis and cross-view generation under noisy input settings demonstrate the superiority of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源