论文标题
8属通用K3表面的合理性
Rationality of the universal K3 surface of genus 8
论文作者
论文摘要
本文的目的是证明14度的偏光$ k3 $表面的普遍家族的合理性。这是通过用立方四倍的模量空间以及四重奏卷轴的数据来识别它来实现的。最后,最后一个模量空间被证明是理性的,因为它具有$ \ mathbb p^n $ - 捆绑的自然结构,而$ k $ compation-compination-compination compination-compination-compination with a $ a $ k \ leq n $。
The aim of the present paper is to prove the rationality of the universal family of polarized $ K3 $ surfaces of degree 14. This is achieved by identifying it with the moduli space of cubic fourfolds plus the data of a quartic scroll. The last moduli space is finally proved to be rational since it has a natural structure of $\mathbb P^n$-bundle over a $ k $-stably rational variety with $k \leq n$.