论文标题

对抗恶意软件检测中的军备竞赛:调查

Arms Race in Adversarial Malware Detection: A Survey

论文作者

Li, Deqiang, Li, Qianmu, Ye, Yanfang, Xu, Shouhuai

论文摘要

恶意软件(恶意软件)是一个主要的网络威胁,必须通过机器学习(ML)技术来解决,因为每天将数百万个新的恶意软件示例注入网络空间。但是,ML容易受到称为对抗性例子的攻击。在本文中,我们通过假设,攻击,防御和安全属性的统一概念框架的镜头进行调查和系统化对抗恶意软件检测(AMD)的领域。这不仅使我们将攻击和防御措施映射到部分订单结构,而且还使我们能够在AMD上下文中清楚地描述攻击强度的武器竞赛。我们提出了许多见解,包括:了解防御者的特征集对于转移攻击的成功至关重要;实际逃避攻击的有效性在很大程度上取决于攻击者在问题空间中进行操作时的自由;了解攻击者的操纵集对防守者的成功至关重要。对抗训练的有效性取决于辩护人在识别最强大攻击方面的能力。我们还讨论了许多未来的研究方向。

Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML is vulnerable to attacks known as adversarial examples. In this paper, we survey and systematize the field of Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions, attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial order structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We draw a number of insights, including: knowing the defender's feature set is critical to the success of transfer attacks; the effectiveness of practical evasion attacks largely depends on the attacker's freedom in conducting manipulations in the problem space; knowing the attacker's manipulation set is critical to the defender's success; the effectiveness of adversarial training depends on the defender's capability in identifying the most powerful attack. We also discuss a number of future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源