论文标题

歧管:三角形汤的强大而可扩展的水密歧管表面生成方法

ManifoldPlus: A Robust and Scalable Watertight Manifold Surface Generation Method for Triangle Soups

论文作者

Huang, Jingwei, Zhou, Yichao, Guibas, Leonidas

论文摘要

我们提出了歧管,这是一种将三角形汤转换为水密歧管的方法。虽然计算机图形中的许多算法都需要输入网格是水密流形的,但实际上,许多由艺术家设计的网格通常用于可视化目的,因此具有非字符结构,例如不正确的连通性,含糊不清的面部,双面表面,双层表面,开放式,开放式,自我交流,自我交流等方面的构建方式和构造均处于面对面的问题。此外,大多数方法都不缩放到高复杂性的网格。在本文中,我们提出了一种方法,该方法在被占用的体素和空体素之间提取外部面,并使用基于投影的优化方法准确恢复类似于参考网格的水密流形。与以前的方法相比,我们的方法更简单。它不依赖于输入三角汤的面部正常,并且可以准确恢复零体积的结构。我们的算法是可扩展的,因为它采用自适应高斯 - 西德尔方法进行形状优化,其中每个步骤都是易于解决的凸问题。我们在ModelNet10和Accucity数据集上测试歧管,以验证我们的方法是否可以生成从对象级形状到城市级型号的水密网格。此外,通过我们的实验评估,我们表明我们的方法比最先进的方法更强大,有效和准确。我们的实施已公开可用。

We present ManifoldPlus, a method for robust and scalable conversion of triangle soups to watertight manifolds. While many algorithms in computer graphics require the input mesh to be a watertight manifold, in practice many meshes designed by artists are often for visualization purposes, and thus have non-manifold structures such as incorrect connectivity, ambiguous face orientation, double surfaces, open boundaries, self-intersections, etc. Existing methods suffer from problems in the inputs with face orientation and zero-volume structures. Additionally most methods do not scale to meshes of high complexity. In this paper, we propose a method that extracts exterior faces between occupied voxels and empty voxels, and uses a projection-based optimization method to accurately recover a watertight manifold that resembles the reference mesh. Compared to previous methods, our methodology is simpler. It does not rely on face normals of the input triangle soups and can accurately recover zero-volume structures. Our algorithm is scalable, because it employs an adaptive Gauss-Seidel method for shape optimization, in which each step is an easy-to-solve convex problem. We test ManifoldPlus on ModelNet10 and AccuCity datasets to verify that our methods can generate watertight meshes ranging from object-level shapes to city-level models. Furthermore, through our experimental evaluations, we show that our method is more robust, efficient and accurate than the state-of-the-art. Our implementation is publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源