论文标题
COVID-19:修改后的SEIR模型的分析结果和不同干预策略的比较
COVID-19: Analytic results for a modified SEIR model and comparison of different intervention strategies
论文作者
论文摘要
易感暴露感染的(SEIR)流行病学模型是疾病扩散的标准模型之一。在这里,我们分析了一个扩展的SEIR模型,该模型解释了无症状的载体,据信在Covid-19传播中起着重要作用。对于此模型,我们为重要数量(例如感染的峰值数量,达到最终受影响人群的峰值和大小所花费的时间)得出许多分析结果。我们还提出了一种准确的方法,即使用线性化方程的主要特征向量很好地描述了早期指数增长的事实。其次,我们探讨了不同的干预策略(例如社会距离(SD)和进行测试(TQ))的效果。两种干预策略(SD和TQ)试图将疾病生殖数($ r_0 $)减少为目标值$ r^{\ rm target} _0 <1 $,但以不同的方式,我们在模型方程中实现。我们发现,对于相同的$ r^{\ rm target} _0 <1 $,TQ比SD更有效地控制大流行。但是,要使TQ有效,它必须基于接触跟踪,我们的研究量化了每天测试的要求比例与每天新案例的数量的比例。我们的分析表明,线性化动力学的最大特征值可简单地理解疾病进展,无论是在干预前还是在干预后,并解释了许多国家的观察数据。我们将结果应用于印度的Covid数据,以在大流行过程中获得启发式预测,并指出预测在很大程度上取决于假定的无症状载体的比例。
The Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model is one of the standard models of disease spreading. Here we analyse an extended SEIR model that accounts for asymptomatic carriers, believed to play an important role in COVID-19 transmission. For this model we derive a number of analytic results for important quantities such as the peak number of infections, the time taken to reach the peak and the size of the final affected population. We also propose an accurate way of specifying initial conditions for the numerics (from insufficient data) using the fact that the early time exponential growth is well-described by the dominant eigenvector of the linearized equations. Secondly we explore the effect of different intervention strategies such as social distancing (SD) and testing-quarantining (TQ). The two intervention strategies (SD and TQ) try to reduce the disease reproductive number, $R_0$, to a target value $R^{\rm target}_0 < 1$, but in distinct ways, which we implement in our model equations. We find that for the same $R^{\rm target}_0 < 1$, TQ is more efficient in controlling the pandemic than SD. However, for TQ to be effective, it has to be based on contact tracing and our study quantifies the required ratio of tests-per-day to the number of new cases-per-day. Our analysis shows that the largest eigenvalue of the linearised dynamics provides a simple understanding of the disease progression, both pre- and post- intervention, and explains observed data for many countries. We apply our results to the COVID data for India to obtain heuristic projections for the course of the pandemic, and note that the predictions strongly depend on the assumed fraction of asymptomatic carriers.