论文标题

为5D能量波动方程式构建激发的多solitons

Construction of excited multi-solitons for the 5D energy-critical wave equation

论文作者

Yuan, Xu

论文摘要

对于5D关键性波方程,我们构建了具有共线速度的激动$ n $ - solitons,即方程式的解决方案$ u $ \ begin {equation*} \ lim_ {t \ to+\ infty} \ big | \ nabla_ { \ end {equation*}其中,对于$ n = 1,\ ldots,n $,$ q_n(t,x)$是lorentz的lorentz变换,是非脱位和充分衰减的兴奋状态的转换,每个状态具有不同但共线的速度。存在证明是遵循Martel-Merle和Côte-Martel为关键浪潮和非线性Klein-Gordon方程而开发的。特别是,我们依靠一种能量方法和线性化操作员的一般胁迫性能。

For the 5D energy-critical wave equation, we construct excited $N$-solitons with collinear speeds, i.e. solutions $u$ of the equation such that \begin{equation*} \lim_{t\to+\infty}\bigg\|\nabla_{t,x}u(t)-\nabla_{t,x}\bigg(\sum_{n=1}^{N}Q_{n}(t)\bigg)\bigg\|_{L^{2}}=0, \end{equation*} where for $n=1,\ldots,N$, $Q_n(t,x)$ is the Lorentz transform of a non-degenerate and sufficiently decaying excited state, each with different but collinear speeds. The existence proof follows the ideas of Martel-Merle and Côte-Martel developed for the energy-critical wave and nonlinear Klein-Gordon equations. In particular, we rely on an energy method and on a general coercivity property for the linearized operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源