论文标题
在对话搜索中总结和探索表格数据
Summarizing and Exploring Tabular Data in Conversational Search
论文作者
论文摘要
表格数据为搜索查询的很大一部分提供了答案。但是,背诵整个结果表在对话搜索系统中是不切实际的。我们建议生成自然语言摘要作为描述表中包含的复杂信息的答案。通过众包实验,我们构建了一个新的面向对话的,开放域的表摘要数据集。它包括带注释的表摘要,不仅回答问题,还可以帮助人们探索表中的其他信息。我们利用此数据集将自动表摘要系统开发为SOTA基线。根据实验结果,我们确定了挑战,并指出了该资源将支持的未来研究方向。
Tabular data provide answers to a significant portion of search queries. However, reciting an entire result table is impractical in conversational search systems. We propose to generate natural language summaries as answers to describe the complex information contained in a table. Through crowdsourcing experiments, we build a new conversation-oriented, open-domain table summarization dataset. It includes annotated table summaries, which not only answer questions but also help people explore other information in the table. We utilize this dataset to develop automatic table summarization systems as SOTA baselines. Based on the experimental results, we identify challenges and point out future research directions that this resource will support.