论文标题

具有逻辑生长和信号依赖性运动的凯勒 - 塞格系统

The Keller-Segel system with logistic growth and signal-dependent motility

论文作者

Jin, Hai-Yang, Wang, Zhi-An

论文摘要

本文与以下具有非线性运动功能的趋化系统有关\ begin {equation} \ label {0-1} \ tag {$ \ ast $} \ begin {cases} u_t = \ nabla \ cdot(γ(γ(v)\ nabla u-u- u-(v) ~~ t> 0, 0 =ΔV+ u-v,&x \ inω,~~ t> 0,\\ u(x,0)= u_0(x),&x \ inω,\ end end {cases} \ end {cases} \ end {equeation},带有均质的neumann neumann neumann边界条件,在有界的域$ω\ subset \ r^2 $ $^2 $的情况下,功能和功能。 $χ(v)$满足以下条件\ begin {inatize} \ item {\ color {black} $(γ,χ)\ in [c^2 [0,\ infty)]^2 $},用$γ(v)> 0 $ $ unding $ $ and {\ color {black} $ {black} $ \ frac inding( $ v \ geq 0 $。}%对于所有$ v \ geq 0 $和$ \ lim \ limits_ {v \ to \ infty} \ frac {|χ(v)|^2} {γ(v)} $已存在。 \ end {inatizize}通过采用能量估计方法,我们建立了\ eqref {0-1}的全球限制解决方案的存在,并使用$μ> 0 $,用于任何$ u_0 \ in W^{1,\ infty}中的任何$ u_0 \(ω)(ω)$。 Then based on a Lyapunov function, we show that all solutions $(u,v)$ of \eqref{0-1} will exponentially converge to the unique constant steady state $(1,1)$ provided $μ>\frac{K_0}{16}$ with $K_0=\max\limits_{0\leq v \leq \ infty} \ frac {|χ(v)|^2} {γ(v)} $。

The paper is concerned with the following chemotaxis system with nonlinear motility functions \begin{equation}\label{0-1}\tag{$\ast$} \begin{cases} u_t=\nabla \cdot (γ(v)\nabla u- uχ(v)\nabla v)+μu(1-u), &x\in Ω, ~~t>0, 0=Δv+ u-v,& x\in Ω, ~~t>0,\\ u(x,0)=u_0(x), & x\in Ω, \end{cases} \end{equation} with homogeneous Neumann boundary conditions in a bounded domain $Ω\subset \R^2$ with smooth boundary, where the motility functions $γ(v)$ and $χ(v)$ satisfy the following conditions \begin{itemize} \item {\color{black}$(γ,χ)\in [C^2[0,\infty)]^2$} with $γ(v)>0$ and {\color{black} $\frac{|χ(v)|^2}{γ(v)}$ is bounded for all $v\geq 0$.} %for all $v\geq 0$ and $\lim\limits_{v\to\infty}\frac{|χ(v)|^2}{γ(v)}$ exists. \end{itemize} By employing the method of energy estimates , we establish the existence of globally bounded solutions of \eqref{0-1} with $μ>0$ for any $u_0 \in W^{1, \infty}(Ω)$. Then based on a Lyapunov function, we show that all solutions $(u,v)$ of \eqref{0-1} will exponentially converge to the unique constant steady state $(1,1)$ provided $μ>\frac{K_0}{16}$ with $K_0=\max\limits_{0\leq v \leq \infty}\frac{|χ(v)|^2}{γ(v)}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源