论文标题

一种使用深度学习的自动化,具有成本效益的光学系统,用于加速反微生物敏感性测试(AST)

An Automated, Cost-Effective Optical System for Accelerated Anti-microbial Susceptibility Testing (AST) using Deep Learning

论文作者

Brown, Calvin, Tseng, Derek, Larkin, Paige M. K., Realegeno, Susan, Mortimer, Leanne, Subramonian, Arjun, Di Carlo, Dino, Garner, Omai B., Ozcan, Aydogan

论文摘要

抗菌敏感性测试(AST)是用于量化抗菌耐药性(AMR)的标准临床程序。目前,黄金标准方法需要18-24小时孵化,并随后由训练有素的医疗技术人员进行增长。我们展示了一种自动化的,具有成本效益的光学系统,可提供早期的AST结果,最大程度地减少孵化时间并消除人类错误,同时与标准表型测定工作流程兼容。该系统由具有成本效益的组件组成,并消除了对光学扫描的需求。神经网络从一系列光纤电缆中处理捕获的光强度信息,以确定在96孔微孔板的每个孔中是否发生了细菌生长。当该系统对来自金黄色葡萄球菌感染的33例分离株进行盲目测试时,使用我们的神经网络正确鉴定了所有含有生长的井的95.03%,平均鉴定生长所需的孵育时间为5.72 h。在7小时后,所有井中有90%的井(生长和无生长)被正确分类,在10.5小时后为95%。我们的深度学习光学系统符合FDA定义的标准,用于平均6.13 h和6.98 h后测试的所有14种抗生素的基本和分类协议。此外,我们的系统平均4.02 h后,在12种可能的12种药物中的11个中,有11个可能的主要错误率和非常重大的错误率以及平均9.39小时后的13种药物中的9个标准。该系统可以实现更快,廉价,自动化的AST,尤其是在资源有限的设置中,有助于减轻全球AMR的兴起。

Antimicrobial susceptibility testing (AST) is a standard clinical procedure used to quantify antimicrobial resistance (AMR). Currently, the gold standard method requires incubation for 18-24 h and subsequent inspection for growth by a trained medical technologist. We demonstrate an automated, cost-effective optical system that delivers early AST results, minimizing incubation time and eliminating human errors, while remaining compatible with standard phenotypic assay workflow. The system is composed of cost-effective components and eliminates the need for optomechanical scanning. A neural network processes the captured optical intensity information from an array of fiber optic cables to determine whether bacterial growth has occurred in each well of a 96-well microplate. When the system was blindly tested on isolates from 33 patients with Staphylococcus aureus infections, 95.03% of all the wells containing growth were correctly identified using our neural network, with an average of 5.72 h of incubation time required to identify growth. 90% of all wells (growth and no-growth) were correctly classified after 7 h, and 95% after 10.5 h. Our deep learning-based optical system met the FDA-defined criteria for essential and categorical agreements for all 14 antibiotics tested after an average of 6.13 h and 6.98 h, respectively. Furthermore, our system met the FDA criteria for major and very major error rates for 11 of 12 possible drugs after an average of 4.02 h, and 9 of 13 possible drugs after an average of 9.39 h, respectively. This system could enable faster, inexpensive, automated AST, especially in resource limited settings, helping to mitigate the rise of global AMR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源