论文标题
跨域斑块检测的子空间潜伏联合图像翻译
Image Translation by Latent Union of Subspaces for Cross-Domain Plaque Detection
论文作者
论文摘要
主动脉和骨盆动脉中的钙化斑块与冠状动脉钙化有关,是心脏病发作的有力预测指标。当前的钙化斑块检测模型显示出对不同域的概括性差(即对比前的对比后CT扫描)。许多最近的作品已经显示了如何使用单个共享潜在空间在域之间转换域之间的跨域对象检测。但是,尽管当前的图像翻译模型在保留全球/中级结构方面做得很好,但他们通常难以保留微小的结构。在医学成像应用中,保留小结构很重要,因为这些结构可以携带与疾病诊断高度相关的信息。关于图像重建的最新作品表明,使用子空间方法联合可以更好地重建复杂的现实世界图像。由于小图像贴片用于训练图像翻译模型,因此有意义地强制执行每个贴片以线性组合表示,该子空间的线性组合可能与该贴片中存在的身体的不同部分相对应。在此激励的过程中,我们使用共享的子空间约束提出了一个图像翻译网络,并显示我们的方法比常规方法更好地保留了微妙的结构(斑块)。我们将方法进一步应用于跨域斑块检测任务,并与最先进的方法相比显示出显着改善。
Calcified plaque in the aorta and pelvic arteries is associated with coronary artery calcification and is a strong predictor of heart attack. Current calcified plaque detection models show poor generalizability to different domains (ie. pre-contrast vs. post-contrast CT scans). Many recent works have shown how cross domain object detection can be improved using an image translation model which translates between domains using a single shared latent space. However, while current image translation models do a good job preserving global/intermediate level structures they often have trouble preserving tiny structures. In medical imaging applications, preserving small structures is important since these structures can carry information which is highly relevant for disease diagnosis. Recent works on image reconstruction show that complex real-world images are better reconstructed using a union of subspaces approach. Since small image patches are used to train the image translation model, it makes sense to enforce that each patch be represented by a linear combination of subspaces which may correspond to the different parts of the body present in that patch. Motivated by this, we propose an image translation network using a shared union of subspaces constraint and show our approach preserves subtle structures (plaques) better than the conventional method. We further applied our method to a cross domain plaque detection task and show significant improvement compared to the state-of-the art method.