论文标题

经验贝叶斯和内核流的一致性,用于分层参数估计

Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation

论文作者

Chen, Yifan, Owhadi, Houman, Stuart, Andrew M.

论文摘要

高斯流程回归在统计,机器学习和反问题上已被证明非常强大。在复杂和现实世界中的广泛应用中,这种方法的成功的一个关键方面是对超参数的分层建模和学习。本文的目的是研究学习分层参数的两个范式:一个是从概率的贝叶斯观点中,尤其是从贝叶斯统计中大量使用的经验贝叶斯方法;另一个来自确定性和近似理论观点,尤其是最近在机器学习文献中提出的内核流量算法。在本文中,在巨大的数据限制中的一致性分析,以及对参数学习中隐式偏见的明确识别,是针对圆环上类似于Matérn的模型的。我们克服的一个特殊的技术挑战是学习类似于Matérn领域的规律性参数,在该领域中,一致性结果在空间统计文献中非常稀缺。此外,我们在类似Matérn的模型之外进行了广泛的数值实验,并进一步比较了这两种算法。这些实验表明学习了其他分层参数,例如振幅和长度尺度。他们还说明了模型错误指定的设置,其中内核流量方法可以表现出与更传统的经验贝叶斯方法相比的表现。

Gaussian process regression has proven very powerful in statistics, machine learning and inverse problems. A crucial aspect of the success of this methodology, in a wide range of applications to complex and real-world problems, is hierarchical modeling and learning of hyperparameters. The purpose of this paper is to study two paradigms of learning hierarchical parameters: one is from the probabilistic Bayesian perspective, in particular, the empirical Bayes approach that has been largely used in Bayesian statistics; the other is from the deterministic and approximation theoretic view, and in particular the kernel flow algorithm that was proposed recently in the machine learning literature. Analysis of their consistency in the large data limit, as well as explicit identification of their implicit bias in parameter learning, are established in this paper for a Matérn-like model on the torus. A particular technical challenge we overcome is the learning of the regularity parameter in the Matérn-like field, for which consistency results have been very scarce in the spatial statistics literature. Moreover, we conduct extensive numerical experiments beyond the Matérn-like model, comparing the two algorithms further. These experiments demonstrate learning of other hierarchical parameters, such as amplitude and lengthscale; they also illustrate the setting of model misspecification in which the kernel flow approach could show superior performance to the more traditional empirical Bayes approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源