论文标题
浮雕量子系统中的prethermal准可观察物
Prethermal quasiconserved observables in Floquet quantum systems
论文作者
论文摘要
通过引入紧急形式的可观测物,预纯化在呈指数长的时间内保护浮标多体相中起着至关重要的作用,而这种准保存的操作员的最终命运可以向无限温度信号。为了阐明在多体浮雕系统中预封层的pr素准保存的性质,在这里我们系统地分析了可观察到的无限温度相关性。我们从数值上表明,自相关的后期行为明确区分了准论可观察结果与未经保守的观测值,从而可以单键单击一组线性独立的准式观测值。通过研究两个浮标自旋模型,我们确定了准保存定律的两个不同机制。首先,当驾驶频率较大时,我们会数字验证能量准定托,因此系统动力学近似由静态的prethermal hamiltonian描述。更有趣的是,在适度的驾驶频率下,如果Floquet驱动器包含大型全球旋转,则仍然可以持续使用另一个准可观察的可观察。我们从理论上展示了如何计算可观察到的可观察的并提供数值验证。在系统地识别出所有对象可观察到的所有可观察物的情况下,我们最终可以使用从固态核磁共振系统中的数值模拟和实验获得的自相关来研究它们在无限时间限制和热力学极限中的行为。
Prethermalization, by introducing emergent quasiconserved observables, plays a crucial role in protecting Floquet many-body phases over exponentially long time, while the ultimate fate of such quasiconserved operators can signal thermalization to infinite temperature. To elucidate the properties of prethermal quasiconservation in many-body Floquet systems, here we systematically analyze infinite temperature correlations between observables. We numerically show that the late-time behavior of the autocorrelations unambiguously distinguishes quasiconserved observables from non-conserved ones, allowing to single out a set of linearly-independent quasiconserved observables. By investigating two Floquet spin models, we identify two different mechanism underlying the quasi-conservation law. First, we numerically verify energy quasiconservation when the driving frequency is large, so that the system dynamics is approximately described by a static prethermal Hamiltonian. More interestingly, under moderate driving frequency, another quasiconserved observable can still persist if the Floquet driving contains a large global rotation. We show theoretically how to calculate this conserved observable and provide numerical verification. Having systematically identified all quasiconserved observables, we can finally investigate their behavior in the infinite-time limit and thermodynamic limit, using autocorrelations obtained from both numerical simulation and experiments in solid state nuclear magnetic resonance systems.