论文标题

关于GNSS位置时间序列的广义回归神经网络的适用性,用于测量和地球物理学中的测量应用预测

On the suitability of generalized regression neural networks for GNSS position time series prediction for geodetic applications in geodesy and geophysics

论文作者

Kiani, M.

论文摘要

在本文中,通用回归神经网络用于预测GNSS位置时间序列。使用IGS 24小时的最终解决方案数据用于德国的不良汉堡永久GNSS站,这表明网络的训练越大,精度越高,无论时间序列的时间范围如何。为了在各种条件下分析神经网络的性能,在不同国家 /地区,即西班牙,法国,罗马尼亚,波兰,波兰,俄罗斯联邦,英国,捷克共和国,瑞典,乌克兰,意大利,意大利,芬兰,斯洛伐克共和国,塞浦路斯,塞浦路斯和希腊。绩效分析分为两部分,没有差距的连续数据和不连续的间隔,没有可用的数据。提出了三种误差量度,即对称的平均绝对百分比误差,标准偏差和绝对误差的平均值。结果表明,对于不连续的数据,可以以高达6厘米的精度预测位置,而连续数据位置则具有更高的预测准确性,高达3厘米。为了将这种机器学习算法的结果与传统统计方法进行比较,使用了Theta方法,这对于高准确的时间序列预测非常有成就。比较表明,广义回归神经网络机学习算法比theta方法更高的准确性,最多可能是250次。此外,它的速度约为4.6倍。

In this paper, the generalized regression neural network is used to predict the GNSS position time series. Using the IGS 24-hour final solution data for Bad Hamburg permanent GNSS station in Germany, it is shown that the larger the training of the network, the higher the accuracy is, regardless of the time span of the time series. In order to analyze the performance of the neural network in various conditions, 14 permanent stations are used in different countries, namely, Spain, France, Romania, Poland, Russian Federation, United Kingdom, Czech Republic, Sweden, Ukraine, Italy, Finland, Slovak Republic, Cyprus, and Greece. The performance analysis is divided into two parts, continuous data-without gaps-and discontinuous ones-having intervals of gaps with no data available. Three measure of error are presented, namely, symmetric mean absolute percentage error, standard deviation, and mean of absolute errors. It is shown that for discontinuous data the position can be predicted with an accuracy of up to 6 centimeters, while the continuous data positions present a higher prediction accuracy, as high as 3 centimeters. In order to compare the results of this machine learning algorithm with the traditional statistical approaches, the Theta method is used, which is well-established for high-accuracy time series prediction. The comparison shows that the generalized regression neural network machine learning algorithm presents better accuracy than the Theta method, possibly up to 250 times. In addition, it is approximately 4.6 times faster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源