论文标题
超级伏特定理和Schur-Sergeev二元性,用于主要有限$ W $ -Superalgebras
Super Vust theorem and Schur-Sergeev duality for principal finite $W$-superalgebras
论文作者
论文摘要
考虑一般线性谎言superalgebra $ \ mathfrak {gl}(m | n)= \ mathfrak {gl}(m | n)_ {\ bar {\ bar {\ bar 0}} \ oplus \ oplus \ mathfrak \ mathfrak {gl}(gl}(m | n)(m | n)与主nilpotent元素$ e \ in \ mathfrak {gl}(m | n)_ {\ bar {\ bar 0}} $关联的vust定理的超级版本。作为该定理的应用,我们然后获得了主要有限$ W $ - 苏格拉尔斯布拉斯的Schur-Sergeev二元性,这部分是Brundan-Kleshchev在\ cite {bkl}中建立的高级Schur-weyl双重性的超级版本
Considering the general linear Lie superalgebra $\mathfrak{gl}(m|n)=\mathfrak{gl}(m|n)_{\bar{\bar 0}}\oplus \mathfrak{gl}(m|n)_{\bar{\bar 1}}$ over $\mathbb{C}$, we first formulate a super version of Vust theorem associated with a principal nilpotent element $e\in \mathfrak{gl}(m|n)_{\bar{\bar 0}}$. As an application of this theorem, we then obtain a Schur-Sergeev duality for principal finite $W$-superalgebras which is partially a super version of Brundan-Kleshchev's higher level Schur-Weyl duality established in \cite{BKl}