论文标题

DeepBSDES的定价障碍选项

Pricing Barrier Options with DeepBSDEs

论文作者

Ganesan, Narayan, Yu, Yajie, Hientzsch, Bernhard

论文摘要

本文提出了一种新颖而直接的方法来解决价格边界和最终值问题,对应于障碍选项,并使用前进深度学习来求解前后回溯的随机微分方程(FBSDES)。如果在成熟之前满足屏障条件,则屏障仪器是过期或转变为另一个工具的工具;否则,它们像没有障碍条件的乐器一样表现。在PDE公式中,这对应于将边界条件添加到最终值问题。到目前为止开发的深BSDE方法尚未直接解决障碍/边界条件。我们通过在计算图中添加节点,以明确监视动力学的每种实现以及保留时间,状态变量和在屏障漏洞或成熟度处于成熟的节点的交易策略值的屏障条件,以明确监控屏障条件,从而将前向深度BSDE扩展到屏障情况。鉴于计算图中的这些其他节点,正向损耗函数量化了根据所选风险措施(例如平方的差异总和)的屏障或最终收益的复制。所提出的方法可以处理FBSDE设置中的任何屏障条件,以及在低维和高维的PDE设置中的任何Dirichlet边界条件。

This paper presents a novel and direct approach to price boundary and final-value problems, corresponding to barrier options, using forward deep learning to solve forward-backward stochastic differential equations (FBSDEs). Barrier instruments are instruments that expire or transform into another instrument if a barrier condition is satisfied before maturity; otherwise they perform like the instrument without the barrier condition. In the PDE formulation, this corresponds to adding boundary conditions to the final value problem. The deep BSDE methods developed so far have not addressed barrier/boundary conditions directly. We extend the forward deep BSDE to the barrier condition case by adding nodes to the computational graph to explicitly monitor the barrier conditions for each realization of the dynamics as well as nodes that preserve the time, state variables, and trading strategy value at barrier breach or at maturity otherwise. Given these additional nodes in the computational graph, the forward loss function quantifies the replication of the barrier or final payoff according to a chosen risk measure such as squared sum of differences. The proposed method can handle any barrier condition in the FBSDE set-up and any Dirichlet boundary conditions in the PDE set-up, both in low and high dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源