论文标题

一种机器学习方法,用于指导前列腺辐射疗法的使用质量患者分数

A machine learning approach to using Quality-of-Life patient scores in guiding prostate radiation therapy dosing

论文作者

Yang, Zhijian, Olszewski, Daniel, He, Chujun, Pintea, Giulia, Lian, Jun, Chou, Tom, Chen, Ronald, Shtylla, Blerta

论文摘要

由于诊断和治疗方面的进步,前列腺癌患者的长期存活率很高。目前,一个重要的目标是在治疗期间和之后保持生活质量。患者接受的辐射与他经历的随后副作用之间的关系是复杂的,难以建模或预测。在这里,我们使用机器学习算法和统计模型来探索辐射处理与处理后胃疗程功能之间的联系。由于目前只有有限数量的患者数据集,因此我们使用图像翻转和基于曲率的插值方法来生成更多数据以利用传输学习。使用插值和增强数据,我们训练了卷积自动编码器网络,以获得权重的近乎最佳的起点。然后,卷积神经网络分析了患者报告的生活质量和辐射之间的关系。我们还使用方差和逻辑回归分析来探索器官对辐射的敏感性,并为每个器官区域发展剂量阈值。我们的发现显示膀胱和生活质量分数之间没有联系。但是,我们发现将辐射应用于后直肠和前部区域与寿命变化之间的联系。最后,我们估计了每个器官的放射治疗剂量阈值。我们的分析将机器学习方法与器官敏感性联系起来,从而提供了使用患者报告的生活质量指标来告知癌症患者护理的框架。

Thanks to advancements in diagnosis and treatment, prostate cancer patients have high long-term survival rates. Currently, an important goal is to preserve quality-of-life during and after treatment. The relationship between the radiation a patient receives and the subsequent side effects he experiences is complex and difficult to model or predict. Here, we use machine learning algorithms and statistical models to explore the connection between radiation treatment and post-treatment gastro-urinary function. Since only a limited number of patient datasets are currently available, we used image flipping and curvature-based interpolation methods to generate more data in order to leverage transfer learning. Using interpolated and augmented data, we trained a convolutional autoencoder network to obtain near-optimal starting points for the weights. A convolutional neural network then analyzed the relationship between patient-reported quality-of-life and radiation. We also used analysis of variance and logistic regression to explore organ sensitivity to radiation and develop dosage thresholds for each organ region. Our findings show no connection between the bladder and quality-of-life scores. However, we found a connection between radiation applied to posterior and anterior rectal regions to changes in quality-of-life. Finally, we estimated radiation therapy dosage thresholds for each organ. Our analysis connects machine learning methods with organ sensitivity, thus providing a framework for informing cancer patient care using patient reported quality-of-life metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源