论文标题

COVID-199公共情感见解和推文分类的机器学习

COVID-19 Public Sentiment Insights and Machine Learning for Tweets Classification

论文作者

Samuel, Jim, Ali, G. G. Md. Nawaz, Rahman, Md. Mokhlesur, Esawi, Ek, Samuel, Yana

论文摘要

与冠状病毒大流行一起,另一个危机以大规模的恐惧和恐慌现象的形式表现出来,这是由于不完整且常常不准确的信息所推动的。因此,有很大的需求可以解决和更好地理解Covid-19的信息危机和衡量公共情绪,以便可以实施适当的消息传递和政策决策。在这篇研究文章中,我们使用冠状病毒特定推文和R统计软件以及其情感分析软件包确定了与大流行有关的公共情感。我们使用描述性文本分析(Covid-19)接近美国的峰值水平,并使用由必要的文本数据可视化支持的描述性文本分析来展示恐惧态度的进展。此外,我们在文本分析的背景下提供了两种基本机器学习(ML)分类方法的方法论概述,并比较它们在分类长度的冠状病毒推文中的有效性。我们使用幼稚的贝叶斯方法观察到短推文的强烈分类精度为91%。我们还观察到,逻辑回归分类方法在较短的推文中提供了74%的合理精度,并且两种方法在更长的推文中均表现出相对较弱的性能。这项研究提供了对冠状病毒恐惧情绪进展的见解,并概述了相关的方法,含义,局限性和机会。

Along with the Coronavirus pandemic, another crisis has manifested itself in the form of mass fear and panic phenomena, fueled by incomplete and often inaccurate information. There is therefore a tremendous need to address and better understand COVID-19's informational crisis and gauge public sentiment, so that appropriate messaging and policy decisions can be implemented. In this research article, we identify public sentiment associated with the pandemic using Coronavirus specific Tweets and R statistical software, along with its sentiment analysis packages. We demonstrate insights into the progress of fear-sentiment over time as COVID-19 approached peak levels in the United States, using descriptive textual analytics supported by necessary textual data visualizations. Furthermore, we provide a methodological overview of two essential machine learning (ML) classification methods, in the context of textual analytics, and compare their effectiveness in classifying Coronavirus Tweets of varying lengths. We observe a strong classification accuracy of 91% for short Tweets, with the Naive Bayes method. We also observe that the logistic regression classification method provides a reasonable accuracy of 74% with shorter Tweets, and both methods showed relatively weaker performance for longer Tweets. This research provides insights into Coronavirus fear sentiment progression, and outlines associated methods, implications, limitations and opportunities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源