论文标题

超图上动态过程的相变和稳定性

Phase transitions and stability of dynamical processes on hypergraphs

论文作者

de Arruda, Guilherme Ferraz, Tizzani, Michele, Moreno, Yamir

论文摘要

HyperGraphs自然代表了高阶的相互作用,从社交互动到神经网络和其他自然系统中持续出现。尽管它们的重要性已得到充分认可,但尚不可用的一个理论框架来描述超图上的一般动力学过程。在本文中,我们弥合了这一差距,并得出表达式,以表达在任意超图上定义的动力系统的稳定性。该框架使我们能够透露,在固定点附近,相关的结构是超图的图形投影,并且可以识别每个结构顺序在给定过程中的作用。我们还可以分析地解决一般兴趣的两个动力学,即社会传染和扩散过程,并表明稳定性条件可以在结构和动态组件中分离。我们的结果表明,在社会传染过程中,只有成对相互作用在吸收状态的稳定性中起作用,而对于扩散动力学,相互作用的顺序起着不同的作用。我们的第一次尝试为进一步探索超图动力学过程提供了一般框架。

Hypergraphs naturally represent higher-order interactions, which persistently appear from social interactions to neural networks and other natural systems. Although their importance is well recognized, a theoretical framework to describe general dynamical processes on hypergraphs is not available yet. In this paper, we bridge this gap and derive expressions for the stability of dynamical systems defined on an arbitrary hypergraph. The framework allows us to reveal that, near the fixed point, the relevant structure is the graph-projection of the hypergraph and that it is possible to identify the role of each structural order for a given process. We also analytically solve two dynamics of general interest, namely, social contagion and diffusion processes, and show that the stability conditions can be decoupled in structural and dynamical components. Our results show that in social contagion processes, only pairwise interactions play a role in the stability of the absorbing state, while for the diffusion dynamics, the order of the interactions plays a differential role. Ours is the first attempt to provide a general framework for further exploration of dynamical processes on hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源