论文标题

在存在子空间的情况下,多重量的核标准最小化用于低级矩阵恢复的先验信息

Multi-weight Nuclear Norm Minimization for Low-rank Matrix Recovery in Presence of Subspace Prior Information

论文作者

Ardakani, Hamideh Sadat Fazael, Daei, Sajad, Haddadi, Farzan

论文摘要

加权核标准最小化最近被认为是从压缩采样测量中重建低级别基质的一种技术,当时有一些有关矩阵的列和行子空间的先前信息。在这项工作中,我们研究了允许多次权重时,我们研究了恢复条件和相关的恢复保证。当一个人可以访问与地面真实矩阵的列和行子空间形成多个角度的先前子空间时,可以使用此设置。尽管该领域的现有作品使用单个重量来惩罚所有角度,但我们提出了一个多重量问题,该问题旨在使用独特的权重独立惩罚每个角度。具体而言,我们证明,在测量算子的弱条件下,我们提出的多重量问题是稳定且健壮的,而对于单重量的情况和标准核定标准最小化的类似条件。此外,它提供了比最先进的方法更好的重建误差。我们通过广泛的数值实验来说明我们的结果,这些实验证明了允许在恢复过程中多次权重的优势。

Weighted nuclear norm minimization has been recently recognized as a technique for reconstruction of a low-rank matrix from compressively sampled measurements when some prior information about the column and row subspaces of the matrix is available. In this work, we study the recovery conditions and the associated recovery guarantees of weighted nuclear norm minimization when multiple weights are allowed. This setup might be used when one has access to prior subspaces forming multiple angles with the column and row subspaces of the ground-truth matrix. While existing works in this field use a single weight to penalize all the angles, we propose a multi-weight problem which is designed to penalize each angle independently using a distinct weight. Specifically, we prove that our proposed multi-weight problem is stable and robust under weaker conditions for the measurement operator than the analogous conditions for single-weight scenario and standard nuclear norm minimization. Moreover, it provides better reconstruction error than the state of the art methods. We illustrate our results with extensive numerical experiments that demonstrate the advantages of allowing multiple weights in the recovery procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源