论文标题

慢速hopf分叉的临界性的内在确定

Intrinsic determination of the criticality of a slow-fast Hopf bifurcation

论文作者

De Maesschalck, Peter, Doan, Thai Son, Wynen, Jeroen

论文摘要

在平面中慢速系统中的慢速hopf(或奇异跳跃)点的存在通常是从矢量场的形状中推导的。但是,将系统以正常形式放置可能很麻烦。在专着的“从出生到过渡的堤防”中,启动了缓慢速度矢量场的内在表现,显示动手公式以检查是否存在这种奇异的接触点。我们从单个公式可以检查HOPF分叉的关键性的意义上,从而概括了结果。我们在以非标准形式给出的慢速系统上演示了结果,其中慢速变量并未彼此分开。该公式很方便,因为它不需要临界曲线的任何参数化。

The presence of slow-fast Hopf (or singular Hopf) points in slow-fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In the monograph "Canards from birth to transition", an intrinsic presentation of slow-fast vector fields is initiated, showing hands-on formulas to check for the presence of such singular contact points. We generalize the results in the sense that the criticality of the Hopf bifurcation can be checked with a single formula. We demonstrate the result on a slow-fast system given in non-standard form where slow and fast variables are not separated from each other. The formula is convenient since it does not require any parameterization of the critical curve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源