论文标题

使用多重优化器的非线性回归分析

Nonlinear Regression Analysis Using Multi-Verse Optimizer

论文作者

Bagchi, Jayri, Si, Tapas

论文摘要

回归分析是一种重要的机器学习任务,用于在业务,体育分析等中进行预测分析。在回归分析中,优化算法在搜索回归模型中的系数中起着重要作用。在本文中,提出了使用最近开发的元元素多率优化器(MVO)的非线性回归分析。该提出的方法应用于10个众所周知的基准非线性回归问题。已经用粒子群优化器(PSO)进行了比较研究。实验结果表明,所提出的方法在统计上优于PSO算法。

Regression analysis is an important machine learning task used for predictive analytic in business, sports analysis, etc. In regression analysis, optimization algorithms play a significant role in search the coefficients in the regression model. In this paper, nonlinear regression analysis using a recently developed meta-heuristic Multi-Verse Optimizer (MVO) is proposed. The proposed method is applied to 10 well-known benchmark nonlinear regression problems. A comparative study has been conducted with Particle Swarm Optimizer (PSO). The experimental results demonstrate that the proposed method statistically outperforms PSO algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源