论文标题

Shiraishi的椭圆形升力作为非平稳的双纤维化功能

Elliptic lift of the Shiraishi function as a non-stationary double-elliptic function

论文作者

Awata, H., Kanno, H., Mironov, A., Morozov, A.

论文摘要

作为ARXIV的开发:1912.12897,我们注意到普通的Shiraishi函数的参数数量不足以描述双椭圆系统(Dell)的通用特征函数。缺乏参数可以通过在该系列的系数中取代椭圆形而不是普通的γ函数来提供。这些新功能(ELS函数)被认为是由压缩的昏暗网络控制的功能,可以同时扮演这三个角色:非平稳dell方程的解决方案,与退化字段(表面运算符)插入的Dell Sundormal块,以及$ 6D $ SUSY $ SUSY $ SUSYCAUGERIORIORIORIOR性的插入。我们描述了相应的结构的基础知识,并就需要检查的各种限制和二元性做出了进一步的猜想,以通过带有DIM对称性的双周期网络模型对Dell描述进行确切的陈述。我们还证明了ELS函数提供对称多项式,这是MacDonald的椭圆形概括,并计算仿期laumon空间的椭圆形属的生成功能。在特定的$ u(1)$案例中,我们找到了$ 6D $分区功能的显式宽大公式,这是$(q,q,t)$ nekrasov-okounkov公式的非平凡椭圆概括,价格从$ 5D $中。

As a development of arXiv:1912.12897, we note that the ordinary Shiraishi functions have an insufficient number of parameters to describe generic eigenfunctions of double elliptic system (Dell). The lacking parameter can be provided by substituting elliptic instead of the ordinary Gamma functions in the coefficients of the series. These new functions (ELS-functions) are conjectured to be functions governed by compactified DIM networks which can simultaneously play the three roles: solutions to non-stationary Dell equations, Dell conformal blocks with the degenerate field (surface operator) insertion, and the corresponding instanton sums in $6d$ SUSY gauge theories with adjoint matter. We describe the basics of the corresponding construction and make further conjectures about the various limits and dualities which need to be checked to make a precise statement about the Dell description by double-periodic network models with DIM symmetry. We also demonstrate that the ELS-functions provide symmetric polynomials, which are an elliptic generalization of Macdonald ones, and compute the generation function of the elliptic genera of the affine Laumon spaces. In the particular $U(1)$ case, we find an explicit plethystic formula for the $6d$ partition function, which is a non-trivial elliptic generalization of the $(q,t)$ Nekrasov-Okounkov formula from $5d$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源