论文标题
全向图像作为移动相机视频的感知质量评估
Perceptual Quality Assessment of Omnidirectional Images as Moving Camera Videos
论文作者
论文摘要
全向图像(也称为静态360°全景)施加与常规2D图像的观察条件大不相同。人类如何看待沉浸式虚拟现实(VR)环境中的图像扭曲是一个重要的问题,受到关注较少。我们认为,除了扭曲的全景本身之外,两种类型的VR查看条件对于确定用户的观看行为以及Panorama的感知质量至关重要:起点和探索时间。我们首先进行心理物理实验,以研究VR观看条件,用户观看行为以及360°图像的感知质量之间的相互作用。然后,我们对收集到的人类数据进行彻底分析,从而导致一些有趣的发现。此外,我们提出了一个计算框架,用于对360°图像的客观质量评估,以令人愉快的方式体现观看条件和行为。具体来说,我们首先使用不同的视图条件下的不同用户查看行为将全向图像转换为几个视频表示。然后,我们利用高级2D全参考视频质量模型来计算感知的质量。我们在拟议的框架内构建了一组特定的质量度量,并在三个VR质量数据库上证明了他们的承诺。
Omnidirectional images (also referred to as static 360° panoramas) impose viewing conditions much different from those of regular 2D images. How do humans perceive image distortions in immersive virtual reality (VR) environments is an important problem which receives less attention. We argue that, apart from the distorted panorama itself, two types of VR viewing conditions are crucial in determining the viewing behaviors of users and the perceived quality of the panorama: the starting point and the exploration time. We first carry out a psychophysical experiment to investigate the interplay among the VR viewing conditions, the user viewing behaviors, and the perceived quality of 360° images. Then, we provide a thorough analysis of the collected human data, leading to several interesting findings. Moreover, we propose a computational framework for objective quality assessment of 360° images, embodying viewing conditions and behaviors in a delightful way. Specifically, we first transform an omnidirectional image to several video representations using different user viewing behaviors under different viewing conditions. We then leverage advanced 2D full-reference video quality models to compute the perceived quality. We construct a set of specific quality measures within the proposed framework, and demonstrate their promises on three VR quality databases.