论文标题

边界图和合子的降低性到CAT(0)空间的异构体

Boundary maps and reducibility for cocycles into the isometries of CAT(0)-spaces

论文作者

Sarti, Filippo, Savini, Alessio

论文摘要

令$γ$成为一个可离散的可计数组,在某些Ergodic标准Borel概率$γ$ -Space $(ω,μ)$上,在有限望远镜尺寸的CAT(0)cat(0) - cat(0) - cat(0) - cat(0) - 空格的可测量群体上作用。如果$ \ mathbf {x} $不承认任何不变的欧几里得子场,我们证明可测量的字段$ \ wideHat {\ mathbf {x}} $扩展到$γ$ buge-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-Bivention consens cons n varariant consens。在恒定场的情况下,这表明存在可测量的共体的Furstenberg地图,从而扩大了Bader,Duchesne和Lécureux的结果。 当$γ<\ mathrm {pu}(n,1)$是无扭转的晶格,而cat(0) - 空间为$ \ nathcal {x}}(p,p,\ infty)$时,我们表明,最大cocycle $之一可还原。结果,我们证明了$ \ mathrm {pu}(1,\ infty)$中最大旋转的无限尺寸刚度现象。

Let $Γ$ be a discrete countable group acting isometrically on a measurable field $\mathbf{X}$ of CAT(0)-spaces of finite telescopic dimension over some ergodic standard Borel probability $Γ$-space $(Ω,μ)$. If $\mathbf{X}$ does not admit any invariant Euclidean subfield, we prove that the measurable field $\widehat{\mathbf{X}}$ extended to a $Γ$-boundary admits an invariant section. In the case of constant fields this shows the existence of Furstenberg maps for measurable cocycles, extending results by Bader, Duchesne and Lécureux. When $Γ<\mathrm{PU}(n,1)$ is a torsion-free lattice and the CAT(0)-space is $\mathcal{X}(p,\infty)$, we show that a maximal cocycle $σ:Γ\times Ω\rightarrow \mathrm{PU}(p,\infty)$ with a suitable boundary map is finitely reducible. As a consequence, we prove an infinite dimensional rigidity phenomenon for maximal cocycles in $\mathrm{PU}(1,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源