论文标题

Lazer-Solimini方程的周期性弹跳解决方案,具有弱排斥性奇异性

Periodic bouncing solutions of the Lazer-Solimini equation with weak repulsive singularity

论文作者

Rojas, David, Torres, Pedro J.

论文摘要

我们证明了弹跳类型的周期性解决方案的存在和多样性,用于弱排斥奇异性的二阶微分方程。可以根据最小的时期和每个时期的奇异性弹性碰撞数量对这种溶液进行分类。证明依赖于庞加莱·贝克霍夫定理。

We prove the existence and multiplicity of periodic solutions of bouncing type for a second-order differential equation with a weak repulsive singularity. Such solutions can be catalogued according to the minimal period and the number of elastic collisions with the singularity in each period. The proof relies on the Poincaré-Birkhoff Theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源