论文标题

与Bernoulli变异自动编码器和自我控制梯度估计器的成对监督哈希

Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and Self-Control Gradient Estimator

论文作者

Dadaneh, Siamak Zamani, Boluki, Shahin, Yin, Mingzhang, Zhou, Mingyuan, Qian, Xiaoning

论文摘要

语义散列已成为许多大规模信息检索系统中快速相似性搜索的关键组成部分,尤其是用于文本数据。带有二进制潜在变量的变异自动编码器(VAE)作为哈希代码,就文档检索的精确度提供了最先进的性能。我们提出具有离散潜在VAE的成对损失函数,以奖励课堂内相似性和对监督哈希的类别之间的差异。采用公正的低变义梯度估计器,而不是依靠现有的偏置梯度估计器来解决优化,而是通过评估在两个相关的二进制哈希代码集中以控制梯度估计值的差异方差来优化哈希功能。与最先进的实验相比,这个新的语义散步框架的性能相比提高了性能。

Semantic hashing has become a crucial component of fast similarity search in many large-scale information retrieval systems, in particular, for text data. Variational auto-encoders (VAEs) with binary latent variables as hashing codes provide state-of-the-art performance in terms of precision for document retrieval. We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing. Instead of solving the optimization relying on existing biased gradient estimators, an unbiased low-variance gradient estimator is adopted to optimize the hashing function by evaluating the non-differentiable loss function over two correlated sets of binary hashing codes to control the variance of gradient estimates. This new semantic hashing framework achieves superior performance compared to the state-of-the-arts, as demonstrated by our comprehensive experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源