论文标题

Delta初始条件的抛物线型安德森模型的空间层状和中央限制定理

Spatial ergodicity and central limit theorems for parabolic Anderson model with delta initial condition

论文作者

Chen, Le, Khoshnevisan, Davar, Nualart, David, Pu, Fei

论文摘要

令$ \ { (2πt)^{ - 1/2} \ exp \ { - x^2/(2t)\} $表示线上的标准高斯热核。我们在同伴论文\ cite {cknp,cknp_b}中使用这些方法的非平地改编,以证明每个$ t> 0 $的随机字段$ x \ mapsto u(t \ ,, x)/p_t(x)/p_t(x)$是每个$ t> 0 $。我们根据在黄,Nualart和Viitasaari \ cite {HNV2018}中引入的Malliavin-Stein方法建立了相关的定量中心限制定理。

Let $\{u(t\,, x)\}_{t >0, x \in\mathbb{R}}$ denote the solution to the parabolic Anderson model with initial condition $δ_0$ and driven by space-time white noise on $\mathbb{R}_+\times\mathbb{R}$, and let $p_t(x):= (2πt)^{-1/2}\exp\{-x^2/(2t)\}$ denote the standard Gaussian heat kernel on the line. We use a non-trivial adaptation of the methods in our companion papers \cite{CKNP,CKNP_b} in order to prove that the random field $x\mapsto u(t\,,x)/p_t(x)$ is ergodic for every $t >0$. And we establish an associated quantitative central limit theorem following the approach based on the Malliavin-Stein method introduced in Huang, Nualart, and Viitasaari \cite{HNV2018}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源