论文标题
M101中巨型H II区域的内部运动学与Keck Cosmic Web Imager
Internal kinematics of giant H II regions in M101 with the Keck Cosmic Web Imager
论文作者
论文摘要
我们使用包括HBETA和[O III] 5007发射线在内的整体场观测值研究了位于Galaxy M101中的巨型H II区域NGC 5455和NGC 5471的运动学,并使用Keck Cosmic Web Imager获得。我们使用单个高斯曲线和多个高斯曲线分析了线曲线,从而收集了存在几个膨胀壳和移动细丝的证据。该线的分解表明,宽(Sigma = 30-50 km/s)的基础成分无处不在,延伸到数百个PC上,而狭窄的狭窄组件的很大一部分具有亚音线线宽度。从全球线曲线推断出的超音速湍流与单个狭窄组件的速度分散一致,即全球概况可能是由于离散气云的综合贡献所产生的。我们确认在NGC 5471中三个明亮的星形核心中存在非常扩展的(400-1200 km/s)的低强度线成分,可能代表了超新星残留物的运动学特征。对于其中一个,已知的超新星残留宿主NGC 5471 B,由于在低金属性下存在放射性冲击,我们发现相对于周围光电离的气体的[O III]/HBETA线比显着降低。我们探讨了全球和单个Spaxel光谱中存在的H I和[O III]线之间的系统宽度差异。我们认为,解决这个长期问题的解决方案在于发射气体的物理学,而不是由不同的热宽度引起的涂抹效应。
We study the kinematics of the giant H II regions NGC 5455 and NGC 5471 located in the galaxy M101, using integral field observations that include the Hbeta and [O III] 5007 emission lines, obtained with the Keck Cosmic Web Imager. We analyse the line profiles using both single and multiple Gaussian curves, gathering evidence for the presence of several expanding shells and moving filaments. The line decomposition shows that a broad (sigma = 30-50 km/s) underlying component is ubiquitous, extending across hundreds of pc, while a large fraction of the narrow components have subsonic line widths. The supersonic turbulence inferred from the global line profiles is consistent with the velocity dispersion of the individual narrow components, i.e. the global profiles likely arise from the combined contribution of discrete gas clouds. We confirm the presence of very extended (400 - 1200 km/s) low-intensity line components in three bright star-forming cores in NGC 5471, possibly representing kinematic signatures of supernova remnants. For one of these, the known supernova remnant host NGC 5471 B, we find a significantly reduced [O III]/Hbeta line ratio relative to the surrounding photoionized gas, due to the presence of a radiative shock at low metallicity. We explore the systematic width discrepancy between H I and [O III] lines, present in both global and individual spaxel spectra. We argue that the resolution of this long-standing problem lies in the physics of the line-emitting gas rather than in the smearing effects induced by the different thermal widths.