论文标题

莱默对新形式的猜测的变体

Variants of Lehmer's speculation for newforms

论文作者

Balakrishnan, Jennifer S., Craig, William, Ono, Ken, Tsai, Wei-Lun

论文摘要

本着莱默(Lehmer)对Ramanujan tau功能的不变猜测的精神,很自然地询问固定整数是$τ(n)$还是傅立叶系数$ a_f(n)$ a_f(n)$的任何给定的newform $ f(z)$。我们提供了一种方法,该方法适用于具有整数系数和琐碎的残留Mod 2 Galois表示形式的新信息,该方法为奇数整数回答了这个问题。我们确定无限的许多空间,这些空间$ 3 \ leq \ ell \ leq 37 $不是具有整数系数的新形式系数的绝对值。对于带有$ n> 1 $的$τ(n)$,我们证明$$τ(n)\ in \ in \ {\ pm 1,\ pm 3,\ pm 5,\ pm 7,\ pm 7,\ pm 13,\ pm 13,\ pm 17,-19,-19,\ pm 23,\ pm 23,\ pm 37,\ pm 37,\ pm 691 \},$ $ $ $ $τ(n)\ in \ in \ left \ {\ pm \ ell \ \:\ 41 \ leq \ ell \ el \ leq 97 \ {\ textrm {with}}}} \ \ \ \ \ lest(\ frac {\ ell} {\ ell} -31,-41,-59,-61,-71,-79,-89 \ right \}。 $$我们还获得了这种新型系数的主要因素数量的尖锐下限。在重量方面,对于奇数$ \ ell $的功能,我们证明$ \ pm \ ell^m $不是任何此类新形式的$ f $的系数,重量$ 2K> 2k> m^{\ pm}(\ ell,m)= o _ {\ ell}(\ ell}(\ ell}(m)$ el copl copr and $ el $ el y是$ mmmmmmmmmmmmmmm^\ f \ m){可计算。

In the spirit of Lehmer's unresolved speculation on the nonvanishing of Ramanujan's tau-function, it is natural to ask whether a fixed integer is a value of $τ(n)$ or is a Fourier coefficient $a_f(n)$ of any given newform $f(z)$. We offer a method, which applies to newforms with integer coefficients and trivial residual mod 2 Galois representation, that answers this question for odd integers. We determine infinitely many spaces for which the primes $3\leq \ell\leq 37$ are not absolute values of coefficients of newforms with integer coefficients. For $τ(n)$ with $n>1$, we prove that $$τ(n)\not \in \{\pm 1, \pm 3, \pm 5, \pm 7, \pm 13, \pm 17, -19, \pm 23, \pm 37, \pm 691\},$$ and assuming GRH we show for primes $\ell$ that $$τ(n)\not \in \left \{ \pm \ell\ : \ 41\leq \ell\leq 97 \ {\textrm{with}}\ \left(\frac{\ell}{5}\right)=-1\right\} \cup \left \{ -11, -29, -31, -41, -59, -61, -71, -79, -89\right\}. $$ We also obtain sharp lower bounds for the number of prime factors of such newform coefficients. In the weight aspect, for powers of odd primes $\ell$, we prove that $\pm \ell^m$ is not a coefficient of any such newform $f$ with weight $2k>M^{\pm}(\ell,m)=O_{\ell}(m)$ and even level coprime to $\ell,$ where $M^{\pm}(\ell,m)$ is effectively computable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源