论文标题
稳定的4加元素的下限
A lower bound on the stable 4-genus of knots
论文作者
论文摘要
我们在基于卡森 - 戈登$τ$ - 签名的结节上呈现一个稳定的$ 4 $属的结构。我们为无限结的扭曲结,扭曲结的下限计算,并在且仅当它消失了稳定的$ 4 $ genus时,就表明扭曲结是结的扭曲。
We present a lower bound on the stable $4$-genus of a knot based on Casson-Gordon $τ$-signatures. We compute the lower bound for an infinite family of knots, the twist knots, and show that a twist knot is torsion in the knot concordance group if and only if it has vanishing stable $4$-genus.