论文标题
对数校正的$ r^2 $重力中的虫洞结构
Wormhole Structures in Logarithmic-Corrected $R^2$ Gravity
论文作者
论文摘要
本文致力于在对数校正的$ r^2 $重力模型的框架工作中找到可行的形状函数,以构建静态虫洞几年。我们讨论物质来源以各向异性压力,各向同性压力和正压压力维持的渐近平坦的虫洞溶液。对于各向异性情况,我们考虑三种形状函数,并以图形方式评估无效的能量条件和弱能量条件及其区域。此外,对于正压和各向同性压力,我们在分析上找到形状函数并讨论其特性。为了形成可穿越的虫洞几何形状,我们谨慎选择$ f(r)$重力模型中涉及的参数值。我们明确地表明,即使对数校正,我们的虫洞解决方案也违反了不存在的定理。我们通过图形分析讨论了所有物理特性,并得出结论,具有相对论形式主义的虫洞溶液可以通过对数校正很好地证明是合理的。
This paper is devoted to find the feasible shape functions for the construction of static wormhole geometry in the frame work of logarithmic-corrected $R^2$ gravity model. We discuss the asymptotically flat wormhole solutions sustained by the matter sources with anisotropic pressure, isotropic pressure and barotropic pressure. For anisotropic case, we consider three shape functions and evaluate the null energy conditions and weak energy conditions graphically along with their regions. Moreover, for barotropic and isotropic pressures, we find shape function analytically and discuss its properties. For the formation of traversable wormhole geometries, we cautiously choose the values of parameters involved in $f(R)$ gravity model. We show explicitly that our wormhole solutions violates the non-existence theorem even with logarithmic corrections. We discuss all physical properties via graphical analysis and it is concluded that the wormhole solutions with relativistic formalism can be well justified with logarithmic corrections.