论文标题
早期临床测试评估的不确定性表示:案例研究
Uncertainty representation for early phase clinical test evaluations: a case study
论文作者
论文摘要
在早期临床测试评估中,在有限的可用经验数据的挑战性情况下,评估了将新技术引入医疗保健系统的潜在好处。这些评估的目的是为决策者提供更多证据,该决策者通常是筹集资料或开发测试的公司,以评估哪些技术应发展到下一阶段评估阶段。在本文中,我们考虑对患有慢性阻塞性肺部疾病(COPD)的患者进行诊断测试的评估。我们描述了图形模型,事先启发和不确定性分析的使用,以提供所需的证据,以使测试能够发展到下一阶段评估阶段。我们特别讨论从护理途径中推断出影响图并进行启发练习,以允许在所有模型参数上指定先验分布。我们通过蒙特卡洛模拟描述了不确定性分析,这使我们能够证明测试的潜在值对不确定性是可靠的。本文提供了一项案例研究,说明了如何使用仔细的贝叶斯分析来增强早期临床测试评估。
In early clinical test evaluations the potential benefits of the introduction of a new technology into the healthcare system are assessed in the challenging situation of limited available empirical data. The aim of these evaluations is to provide additional evidence for the decision maker, who is typically a funder or the company developing the test, to evaluate which technologies should progress to the next stage of evaluation. In this paper we consider the evaluation of a diagnostic test for patients suffering from Chronic Obstructive Pulmonary Disease (COPD). We describe the use of graphical models, prior elicitation and uncertainty analysis to provide the required evidence to allow the test to progress to the next stage of evaluation. We specifically discuss inferring an influence diagram from a care pathway and conducting an elicitation exercise to allow specification of prior distributions over all model parameters. We describe the uncertainty analysis, via Monte Carlo simulation, which allowed us to demonstrate that the potential value of the test was robust to uncertainties. This paper provides a case study illustrating how a careful Bayesian analysis can be used to enhance early clinical test evaluations.