论文标题

隔室流行模型的新表述,用于孵育和去除时间的任意分布

A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times

论文作者

Hernández, P., Pena, C., Ramos, A., Gómez-Cadenas, J. J.

论文摘要

流行病学中的隔室模型的范式假定指数分布的孵育时间和去除时间,这在实际人群中并不现实。具有多个指数分布的变量的常用变体更加灵活,但不允许任意分布。我们提出了一种新的公式,重点关注SEIR概念,该概念允许包括孵化和去除时间的一般分布。我们将解决方案与两种类型的基于代理的模型仿真,一种在空间均匀的模型中进行比较,其中感染是通过接近性发生的,并且在具有不同聚类属性的无标度网络上进行模型,如果存在任何两个药物之间的任何两个药物之间的感染,则在其存在的情况下发生。在这两种情况下,我们都发现很好的共识。此外,根据逻辑曲线,发现了方程式的渐近解决方案家族,在非全日制时间转移之后,它非常适合所有微动力学模拟。该公式可以采用简单的数值方法。提供了Julia和Python的软件。

The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源