论文标题
散装电解质溶液的有限场形式主义
Finite field formalism for bulk electrolyte solutions
论文作者
论文摘要
电解质溶液对电场做出反应的方式对于了解这些系统在平衡和远离平衡的行为至关重要。对于这种系统的线性响应理论的当前公式与常见分子动力学(MD)实现不一致。使用有限的场形式主义,适用于有限温度MD,我们研究了大量NaCl溶液对有限的Maxwell($ \ MATHBF {e} $)和电气位移($ \ MATHBF {D} $)领域的响应。常数$ \ mathbf {e} $ hamiltonian允许我们以简单的方式得出离子电导率的线性响应关系,该关系与常规MD模拟中使用的力一致。在常数$ \ mathbf {e} $中,在实验值的15%以内,在常数$ \ mathbf {e} $下的电解质溶液模拟模型。有限的场方法还使我们能够从其极化响应中测量溶剂的介电常数,这可以随着离子强度的增加而降低。从极化响应与极化波动测得的介电常数的比较可以直接评估对这种介质减小的动态贡献,我们认为这很小,但并不重要。使用常数$ \ mathbf {d} $配方,我们还重新列出了Stillinger-Lovett条件,该条件在溶剂和离子极化波动之间严格限制。
The manner in which electrolyte solutions respond to electric fields is crucial to understanding the behavior of these systems both at, and away from, equilibrium. The present formulation of linear response theory for such systems is inconsistent with common molecular dynamics (MD) implementations. Using the finite field formalism, suitably adapted for finite temperature MD, we investigate the response of bulk aqueous NaCl solutions to both finite Maxwell ($\mathbf{E}$) and electric displacement ($\mathbf{D}$) fields. The constant $\mathbf{E}$ Hamiltonian allows us to derive the linear response relation for the ionic conductivity in a simple manner that is consistent with the forces used in conventional MD simulations. Simulations of a simple point charge model of an electrolyte solution at constant $\mathbf{E}$ yield conductivities at infinite dilution within 15% of experimental values. The finite field approach also allows us to measure the solvent's dielectric constant from its polarization response, which is seen to decrease with increasing ionic strength. Comparison of the dielectric constant measured from polarization response versus polarization fluctuations enables direct evaluation of the dynamic contribution to this dielectric decrement, which we find to be small but not insignificant. Using the constant $\mathbf{D}$ formulation, we also rederive the Stillinger-Lovett conditions, which place strict constraints on the coupling between solvent and ionic polarization fluctuations.