论文标题

随机多项式衍生物的半圆定律

A Semicircle Law for Derivatives of Random Polynomials

论文作者

Hoskins, Jeremy G., Steinerberger, Stefan

论文摘要

令$ x_1,\ dots,x_n $ be $ n $独立且分布的随机变量,平均零,单位差异和所有剩余订单的有限矩。我们研究随机多项式$ p_n $,根为$ x_1,\ dots,x_n $。我们证明,对于$ \ ell \ in \ mathbb {n} $固定为$ n \ rightarrow \ infty $,$(n- \ ell) - $ p_n^{} $的$ th衍生物的行为就像hermite polynomial:compact,$ x $ compact,$ x $ compact,$ x $ \ frac {\ ell!} {n!} \ cdot p_n^{(n- \ ell)} \ left(\ frac {x} {x} {\ sqrt {n}}} \ right) Probabilists的Hermite多项式和$γ_n$是一个随机变量,将$ \ Mathcal {n}(0,1)$ Gaussian融合为$ n \ rightarrow \ rightarrow \ infty $。因此,当多次区分随机多项式时,存在普遍性现象:其余的根遵循Wigner半圆形分布。

Let $x_1, \dots, x_n$ be $n$ independent and identically distributed random variables with mean zero, unit variance, and finite moments of all remaining orders. We study the random polynomial $p_n$ having roots at $x_1, \dots, x_n$. We prove that for $\ell \in \mathbb{N}$ fixed as $n \rightarrow \infty$, the $(n-\ell)-$th derivative of $p_n^{}$ behaves like a Hermite polynomial: for $x$ in a compact interval,$${n^{\ell/2}} \frac{\ell!}{n!} \cdot p_n^{(n-\ell)}\left( \frac{x}{\sqrt{n}}\right) \rightarrow He_{\ell}(x + γ_n),$$ where $He_{\ell}$ is the $\ell-$th probabilists' Hermite polynomial and $γ_n$ is a random variable converging to the standard $\mathcal{N}(0,1)$ Gaussian as $n \rightarrow \infty$. Thus, there is a universality phenomenon when differentiating a random polynomial many times: the remaining roots follow a Wigner semicircle distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源