论文标题
非线性系统的数据驱动反馈稳定:基于库普曼的模型预测控制
Data-driven feedback stabilization of nonlinear systems: Koopman-based model predictive control
论文作者
论文摘要
在这项工作中,提出了一个预测控制框架,用于非线性系统的反馈稳定。为了实现这一目标,我们将Koopman运营商理论与基于Lyapunov的模型预测控制(LMPC)相结合。主要思想是使用Koopman eigenfunctions将非线性动力学从状态空间转换为功能空间 - 对于控制仿射系统,这将导致(提升)功能空间中的双线性模型。然后,在Koopman EigenFunction坐标中配制了一个预测控制器,该坐标使用基于辅助控制Lyapunov函数(CLF)有界控制器作为约束,以确保Koopman系统在功能空间中的稳定性。只要存在原始状态空间和(升起的)功能空间之间的连续可区分的逆映射,我们表明设计的控制器能够将Koopman Biinear System的反馈稳定性转换为原始的非线性系统。值得注意的是,这项工作中提出的反馈控制设计仍然完全由数据驱动,并且不需要对原始系统的任何明确知识。此外,由于Koopman模型的双线性结构,寻求CLF不再是LMPC的瓶颈。基准数值示例证明了提出的反馈控制设计的实用性。
In this work, a predictive control framework is presented for feedback stabilization of nonlinear systems. To achieve this, we integrate Koopman operator theory with Lyapunov-based model predictive control (LMPC). The main idea is to transform nonlinear dynamics from state-space to function space using Koopman eigenfunctions - for control affine systems this results in a bilinear model in the (lifted) function space. Then, a predictive controller is formulated in Koopman eigenfunction coordinates which uses an auxiliary Control Lyapunov Function (CLF) based bounded controller as a constraint to ensure stability of the Koopman system in the function space. Provided there exists a continuously differentiable inverse mapping between the original state-space and (lifted) function space, we show that the designed controller is capable of translating the feedback stabilizability of the Koopman bilinear system to the original nonlinear system. Remarkably, the feedback control design proposed in this work remains completely data-driven and does not require any explicit knowledge of the original system. Furthermore, due to the bilinear structure of the Koopman model, seeking a CLF is no longer a bottleneck for LMPC. Benchmark numerical examples demonstrate the utility of the proposed feedback control design.