论文标题

Boussinesq-Peregrine水波模型及其数值近似

Boussinesq-Peregrine water wave models and their numerical approximation

论文作者

Katsaounis, Theodoros, Mitsotakis, Dimitrios, Sadaka, George

论文摘要

在本文中,我们通过应用Galerkin有限元方法来考虑Boussinesq-Peregrine类型系统的数值解决方案。解释了BousSinesQ系统的结构,并比较了某些替代性非线性和分散术语。提出了对使用各种有限元元素空间在非结构化三角网格上使用各种有限元空间的汇聚特性的详细研究。 除了对公共半学系统的研究外,还得出了BBM-BBM类型的新的Boussinesq系统。新系统在其动量方程式中具有相同的结构,但与比素系统相比,质量保护方程式的结构略有不同。此外,应用于新系统的有限元方法在用于其数值近似时具有更好的收敛属性。 由于缺乏针对正在考虑的系统的孤立波解决方案的分析公式,因此提出了一种与Petviashvili迭代相结合的Galerkin有限元方法,用于数字生成线单位波的准确近似值。出现了与孤立和周期性波的传播相关的各种数值实验以及它们与域边界的相互作用。我们得出的结论是,当将galerkin有限元法的长长波长近似时,当应用于BBM-BBM类型系统时,这两个系统的精度都具有相似的精度。

In this paper we consider the numerical solution of Boussinesq-Peregrine type systems by the application of the Galerkin finite element method. The structure of the Boussinesq systems is explained and certain alternative nonlinear and dispersive terms are compared. A detailed study of the convergence properties of the standard Galerkin method, using various finite element spaces on unstructured triangular grids, is presented. Along with the study of the Peregrine system, a new Boussinesq system of BBM-BBM type is derived. The new system has the same structure in its momentum equation but differs slightly in the mass conservation equation compared to the Peregrine system. Further, the finite element method applied to the new system has better convergence properties, when used for its numerical approximation. Due to the lack of analytical formulas for solitary wave solutions for the systems under consideration, a Galerkin finite element method combined with the Petviashvili iteration is proposed for the numerical generation of accurate approximations of line solitary waves. Various numerical experiments related to the propagation of solitary and periodic waves over variable bottom topography and their interaction with the boundaries of the domains are presented. We conclude that both systems have similar accuracy when approximate long waves of small amplitude while the Galerkin finite element method is more effective when applied to BBM-BBM type systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源