论文标题

马尔可夫连锁店(3月)。 I.确定将理论模型拟合到事件地平线望远镜观测的偏见

Markov Chains for Horizons (MARCH). I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations

论文作者

Psaltis, Dimitrios, Ozel, Feryal, Medeiros, Lia, Christian, Pierre, Kim, Junhan, Chan, Chi-kwan, Conway, Landen J., Raithel, Carolyn A., Marrone, Dan, Lauer, Tod R.

论文摘要

我们引入了一种新的马尔可夫链蒙特卡洛(MCMC)算法,并带有平行回火,以将黑洞的地平尺度图像的理论模型拟合到事件地平线望远镜(EHT)的干涉数据。该算法在数据中实现噪声分布的形式,这些形式适合所有信噪比。除了具有微不足道的可行化外,该算法还针对高性能进行了优化,在单个处理器上在20秒内实现了100万个MCMC链步骤。我们将合成数据用于M87的2017 EHT覆盖范围,这些覆盖是基于分析和一般相对论磁性水力动力学(GRMHD)模型图像生成的,以探索拟合模型中偏见的几种潜在偏见来源。我们证明,干涉数据的显着特征近的数据点对推断的模型参数产生了不成比例的影响。我们还表明,EHT基准的首选方向在推断模型图像的方向时引入了明显的偏见。最后,我们讨论有助于确定现实应用中此类偏见的存在和严重性的策略。

We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 seconds on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源