论文标题
基于可调型和定向选择性的热量排放的纳米平方石墨烯的可调性热发射的血浆中红外光源
Plasmonically enhanced mid-IR light source based on tunable spectrally and directionally selective thermal emission from nanopatterned graphene
论文作者
论文摘要
我们提供了基于纳米平底石墨烯(NPG)的频谱选择性热中IR源的概念证明,其典型的CVD生长石墨烯(最高可达$ 3000 $ CM $^2 $^2 $ V $^{ - 1} $ s $ s $ s $^{ - 1} $,可确保对大型大面积的可扩展性。为此,我们解决了在存在面内电场的情况下用椭圆形虫洞进行双曲线的静电问题。 NPG板上的局部表面等离子体(LSP)允许控制和调整波长的热发射光谱,从3 $ $ m至12 $μ$ m。 LSP和光腔以及NPG的原始石墨烯的排放量从约2.3%增加到80%,从而超过了最先进的原始石墨烯光源在近红外(NIR)运行的原始石墨烯光源(NIR)100倍。由焦耳加热实现。通过概括Planck的理论并考虑了RPA中石墨烯中表面等离子体非局部响应的非局部波动 - 散引血定理,我们表明,石墨烯等离子元素的相干长度和热发射光子的相干性长度可以分别为13美元$ m $ m和150 $ $ m $ m m和150 $ $ m,从而创建了一个机会,从而创建了phseers的机会。连贯性的空间相变化允许通过调谐费米能量来在$ 12^\ circ $和$ 80^\ circ $之间的热发射范围内进行横向变化。我们对非局部流体动力反应的分析导致了这样的猜想,即石墨烯中的扩散长度和粘度是频率依赖性的。使用有限差分时间域(FDTD)计算,耦合模式理论和RPA,我们开发了基于NPG的MID-IR光源的模型,该模型将为基于石墨烯的光学中IR中IR沟通,中IR中IR颜色,中IR中IR颜色显示,中IIR光谱和病毒检测铺平道路。
We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to $3000$ cm$^2$V$^{-1}$s$^{-1}$), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet allow for the control and tuning of the thermal emission spectrum in the wavelength regime from 3 $μ$m to 12 $μ$m. The LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared (NIR) by a factor of 100. A maximum emission power per area of 11x10^3 W/m$^2$ at $T=2000$ K for a bias voltage of $V=23$ V is achieved by Joule heating. By generalizing Planck's theory and considering the nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in graphene in RPA, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13 $μ$m and 150 $μ$m, respectively, providing the opportunity to create phased arrays. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between $12^\circ$ and $80^\circ$ by tuning the Fermi energy. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain (FDTD) calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.