论文标题

两种物种在随机催化链上的反应晶格气体的平衡性能

Equilibrium properties of two-species reactive lattice gases on random catalytic chains

论文作者

Shapoval, Dmytro, Dudka, Maxym, Bénichou, Olivier, Oshanin, Gleb

论文摘要

我们在这里重点关注由两种物种$ a+b \ to \ oslash $反应形成的吸附物的热力学特性,并在具有异构性“催化”特性的一维无限晶格上。在我们的型号中,硬核$ a $ a $ a $ a $颗粒会与储层进行连续交流,并在存在“催化剂”的情况下出现不同的物种时反应。后者是通过假设晶格中随机选择的键促进反应(I)或该反应被随机选择的晶格位点激活(Model II)而建模的。在催化剂的空间分布中退火障碍的情况下,我们通过求解由相应平均的宏伟的传统分区函数遵守的三个位点(Model I)或四个位点(Model II)递归来计算吸附物的压力。在淬火障碍的情况下,我们使用两种互补方法来找到压力的$ \ textit {extrive} $表达式。第一种方法是基于直接组合论证。在第二种方法中,我们以随机矩阵来构架模型。然后将压力表示为随机$ 3 \ times 3 $矩阵的乘积痕迹的平均对数 - 不相关(模型I)或依次相关(模型II)。

We focus here on the thermodynamic properties of adsorbates formed by two-species $A+B \to \oslash$ reactions on a one-dimensional infinite lattice with heterogeneous "catalytic" properties. In our model hard-core $A$ and $B$ particles undergo continuous exchanges with their reservoirs and react when dissimilar species appear at neighboring lattice sites in presence of a "catalyst." The latter is modeled by supposing either that randomly chosen bonds in the lattice promote reactions (Model I) or that reactions are activated by randomly chosen lattice sites (Model II). In the case of annealed disorder in spatial distribution of a catalyst we calculate the pressure of the adsorbate by solving three-site (Model I) or four-site (Model II) recursions obeyed by the corresponding averaged grand-canonical partition functions. In the case of quenched disorder, we use two complementary approaches to find $\textit{exact}$ expressions for the pressure. The first approach is based on direct combinatorial arguments. In the second approach, we frame the model in terms of random matrices; the pressure is then represented as an averaged logarithm of the trace of a product of random $3 \times 3$ matrices -- either uncorrelated (Model I) or sequentially correlated (Model II).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源