论文标题
隐私斑马:零证据生物识别识别评估
The Privacy ZEBRA: Zero Evidence Biometric Recognition Assessment
论文作者
论文摘要
越来越多的隐私立法要求在语音技术中保存隐私,尽管缺乏解决方案。虽然评估运动是发展进度的长期经验的工具,但考虑隐私对手的需求意味着传统的评估方法必须适合对隐私和隐私保护解决方案的评估。本文介绍了这一方向的第一步:指标。 我们介绍了零证据生物识别识别评估(Zebra)框架,并提出了两个新的隐私指标。他们衡量给定保障措施为人口提供的平均隐私保护水平以及对个人最严重的隐私披露。本文在语音挑战范围内展示了他们对隐私保护评估的应用。虽然Zebra框架是考虑到语音应用程序的设计,但它是将候选人纳入生物识别信息保护标准的候选者,并且很容易扩展到在言语和生物识别技术之外的应用程序中的隐私研究中。
Mounting privacy legislation calls for the preservation of privacy in speech technology, though solutions are gravely lacking. While evaluation campaigns are long-proven tools to drive progress, the need to consider a privacy adversary implies that traditional approaches to evaluation must be adapted to the assessment of privacy and privacy preservation solutions. This paper presents the first step in this direction: metrics. We introduce the zero evidence biometric recognition assessment (ZEBRA) framework and propose two new privacy metrics. They measure the average level of privacy preservation afforded by a given safeguard for a population and the worst-case privacy disclosure for an individual. The paper demonstrates their application to privacy preservation assessment within the scope of the VoicePrivacy challenge. While the ZEBRA framework is designed with speech applications in mind, it is a candidate for incorporation into biometric information protection standards and is readily extendable to the study of privacy in applications even beyond speech and biometrics.