论文标题
动力学喷雾剂系统的扩散 - 附属物和随机强迫
Diffusion-approximation for a kinetic spray-like system with random forcing
论文作者
论文摘要
我们研究了一个动力学玩具模型,用于浸入环境流体中的颗粒喷雾,但要受到混合,依赖空间的马尔可夫工艺给出的其他随机强迫。使用扰动的测试功能方法,我们得出了动力学系统的流体动力极限。极限密度的定律满足了Stratonovich形式的随机保护方程,其漂移和扩散系数完全取决于与马尔可夫扰动相关的固定过程定律。
We study a kinetic toy model for a spray of particles immersed in an ambient fluid, subject to some additional random forcing given by a mixing, space-dependent Markov process. Using the perturbed test function method, we derive the hydrodynamic limit of the kinetic system. The law of the limiting density satisfies a stochastic conservation equation in Stratonovich form, whose drift and diffusion coefficients are completely determined by the law of the stationary process associated with the Markovian perturbation.